
Understanding Go Web Framework Popularity and
Enabling Standard Library Adoption Through

Practical Examples
Jackson Lohman
Integrated Studies

Utah Valley University
Orem, USA
j@jaxlo.net

Abstract—Web frameworks for the Go programming language
have gained popularity due to their convenience and docu-
mentation, often at the cost of underutilizing Go’s powerful
standard library. This reliance on third-party tools can introduce
unnecessary complexity and limit the inherent flexibility of Go.

This paper explores the reasons behind Go web framework
adoption, identifies barriers to standard library usage, and
presents a practical code cookbook demonstrating how to build
web applications. It goes over topics such as routing, templating,
databases, logging and explains when it might be beneficial to
use third party libraries. As a proof-of-concept, the cookbook
itself is developed using Go’s standard library and PostgreSQL
within Docker containers.

Index Terms—Go, Standard library, Web frameworks, Soft-
ware architecture

I. INTRODUCTION

Go (often referred to as Golang) has emerged as a com-
pelling language for web development. It offers C++-like per-
formance, Python-like readability, and a feature-rich standard
library. Despite the robust standard library, many developers
default to third-party web frameworks such as Gorilla, Gin, or
Fiber. This dependency on external frameworks can limit flex-
ibility, reduce long-term maintainability, and add unnecessary
abstraction.

This paper investigates why external frameworks have be-
come the norm in the Go ecosystem, highlighting gaps in
documentation, community examples, and the initial learning
curve of the standard library. To address these issues, we
introduce a resource called Supermoto1, a developer-facing
cookbook designed to showcase practical web development
primarily using Go’s standard library and PostgreSQL. Named
after the versatile motorcycle racing style that blends dirt and
road riding, Supermoto embraces Go’s minimalist spirit while
demonstrating its adaptability across diverse web development
challenges. The cookbook covers real-world scenarios such
as routing, templating, and database integration, and explains
when it might be worth using third-party packages.

1https://supermoto.jaxlo.net

II. BACKGROUND AND RELATED WORK

A. History of Routers in Go

When Go was released by Google in 2009, it included the
net/http package, providing developers with a minimal yet
capable standard library for building web servers. However, its
built-in router lacked essential features such as path parameters
and method-specific routing. These limitations prompted the
development of third-party routers and frameworks to enhance
the developer experience.

One of the earliest and most widely adopted routers was
Gorilla Mux, which offered support for route variables, regular
expressions, and middleware. It became a de facto standard for
Go web development until it was officially archived in 2022
due to declining maintenance activity [1]. Months later, in
2023, it found a new group of Core Maintainers and revived
the project [2].

Another popular router, julienschmidt/httprouter, focused on
speed and minimalism. It was later adopted as the underlying
engine in several full-featured frameworks [3].

B. History of Frameworks in Go

Frameworks in Go likely emerged because of their preva-
lence in other programming languages and the desire to
simplify common web development tasks. Contributing to
their widespread adoption, many of these frameworks offered
well-organized documentation accompanied by clear usage
examples. This contrasts with the minimal standard library
documentation with limited examples.

Gin, introduced in 2014, gained popularity due to its fea-
tures, performance and through documentation. Gin provided
an alternative to Martini, an earlier web framework. Built on
top of julienschmidt/httprouter, Gin’s website claims a 40 time
performance increase over Martini [4]. According to the 2023
JetBrains Developer Ecosystem Survey, 51% of respondents
used Gin. This is in contrast to 43% of respondents who used
net/http [5].

Following Gin in popularity is the Echo framework at 13%
[5]. Echo supported advanced features such as Automatic
TLS, HTTP/2 and template rendering, allowing developers to

https://supermoto.jaxlo.net


build robust and scalable RESTful APIs effortlessly. Its design
facilitated the organization of endpoints into logical groups,
simplifying the management of complex APIs [6].

In 2019, the Fiber framework was introduced, inspired
by Express.js. Built on top of fasthttp, Fiber prioritized
performance while offering a familiar Node.js-like developer
experience. It was designed to ease development with zero
memory allocation and performance in mind, advertising itself
as suitable for building high-performance web applications [7].
This framework was not included in the JetBrains survey [5].

Over time, the Go ecosystem experienced fragmentation,
with different projects emphasizing various trade-offs between
abstraction, performance, and developer ergonomics. Frame-
works like Buffalo, which attempted to offer a full-stack Rails-
like experience, saw limited long-term adoption. Buffalo aimed
to provide a ”rapid web development” environment, integrating
front-end and back-end development, but its comprehensive
approach was not universally embraced within the Go com-
munity [8]. Conversely, performance-centric developers often
preferred minimalist routers or the standard library itself,
aligning with Go’s philosophy of simplicity and efficiency.

C. The Impact of Go 1.22’s Improved Standard Library Router
A significant milestone occurred with the release of Go

1.22 in February 2024, which introduced major improve-
ments to the net/http router. These enhancements in-
cluded support for method-specific routing, route variables
(e.g., /user/{id}), and wildcard path segments. With these
additions, the standard library closed many functional gaps
previously addressed by external frameworks, encouraging
renewed interest in standard-library-based development.

D. Performance Comparison of Go Routers
Most Go router projects claim superior speed, measuring

factors such as throughput (requests per second), latency,
and memory allocation. Unfortunately, benchmarking of Go
routers remains limited, particularly since the introduction of
Go 1.22’s enhanced ServeMux.

It is worth mentioning that there are routers based
on fasthttp instead of the standard library’s net/http.
fasthttp achieves its performance gains partly by deviating
from full HTTP/1.1 compliance. Additionally, many Go de-
velopers claim fasthttp performance is only slightly better
when tested in objective benchmarks [9] [10].

For developers seeking maximum performance, alternatives
such as gnet are worth looking into. gnet is a high-
performance, event-driven networking framework that offers
very low-level control over network operations. However, its
complexity associated with building a website upon it would
be considerable [11].

The general consensus among Go developers is that most
mainstream routers, such as julienschmidt/httprouter, Chi, and
the standard library’s ServeMux, offer similar real world
performance. Consequently, the choice of router should be
guided by factors like maintainability, feature set, community
support, and alignment with project requirements, rather than
solely by performance considerations.

E. Exploring Framework Popularity
When developers new to Go ask which web framework to

use, responses typically fall into two broad categories:
• Use only the standard library: Advocates argue that Go’s

net/http package provides everything needed to build
reliable web applications.

• Use a third-party framework: Recommendations often
include popular options like Gin, Echo, Fiber, or Chi,
each offering different features and trade-offs.

While the Go standard library is powerful and well-
engineered, its documentation tends to be brief. Because of
this, it lacks examples of many common web development
practices such as middleware chaining, serving static files,
or implementing template rendering. Instead, it provides only
the fundamental components necessary to build these features,
requiring additional effort and time from the developer.

In contrast, third-party frameworks typically offer rich, task-
specific documentation. These resources often include detailed
tutorials, real-world examples, and pre-built abstractions that
simplify development workflows. This accessibility signifi-
cantly contributes to their widespread adoption, especially
among newcomers.

Another contributing factor is developer familiarity. Go’s
syntax and development paradigm differ considerably from
those of languages like JavaScript or Python. Developers tran-
sitioning from those ecosystems often seek tools that provide
a more familiar and opinionated structure. Many frameworks
and libraries intentionally emulate patterns and syntax found
in popular environments such as Express.js or Django to cater
to this expectation.

Although resources exist for building web applications using
only the standard library, they are often outdated (pre-Go
1.22) or locked behind paywalls. An exception to this trend
has emerged with the release of Go 1.22 and its enhanced
ServeMux. The new routing capabilities have inspired a resur-
gence of community-written blog posts and tutorials, but they
primarily focus on the router and do not cover much else.

F. Framework Dependence and the Case for Minimalism
Go’s standard library offers developers a high degree of

flexibility. This approach aligns with Go’s overarching philos-
ophy: to empower developers through simplicity, transparency,
and explicit code.

In contrast, third-party frameworks often introduce abstrac-
tions and patterns that can lock programmers into framework-
specific patterns. Additionally, some frameworks diverge from
the net/http standard handler interface. This limits compatibil-
ity with external packages and makes migrating away from
the framework much more difficult.

Another concern is the maintenance and lifecycle of third-
party tools. Frameworks like Gorilla and Buffalo, once popular
in the Go ecosystem, experienced periods of abandonment
or became unmaintained altogether. Additionally, breaking
changes introduced in framework updates can disrupt appli-
cation stability with little warning—posing a significant risk
in production environments.



Minimalist codebases that rely primarily on the standard
library benefit from reduced external dependencies. This not
only simplifies auditing and vulnerability management but
also minimizes the surface area for bugs and inconsistencies
introduced by third-party abstractions.

That said, there are scenarios where external frameworks
can provide short-term advantages. During time-sensitive
events such as hackathons or prototyping, the scaffolding tools,
conventions, and rich documentation offered by frameworks
are likely to accelerate development.

Nevertheless, for production-grade applications where sta-
bility, maintainability, and long-term support are required, a
minimalist approach grounded in the standard library is often
the most sustainable choice. It encourages clarity, reduces
technical debt, and reinforces Go’s design values.

G. Database Access Patterns in Go

Go’s philosophy of simplicity and explicitness has influ-
enced how database access is structured within web appli-
cations. Rather than relying on heavy, framework-integrated
ORMs, the Go ecosystem favors composable, transparent
patterns that give developers fine-grained control over queries
and performance. This is included due to database archi-
tecture also being a commonly misunderstood part of Go
development. Several architectural patterns have emerged as
common strategies, each offering different tradeoffs in terms
of abstraction, testability, and developer ergonomics.

One widely adopted approach is the Repository Pattern,
originally described in Eric Evans’ Domain-Driven Design
[12]. This pattern encapsulates database interactions behind
interfaces, promoting separation of concerns and making code-
bases more testable and modular. It is particularly effective in
layered or hexagonal architectures, where infrastructure should
be decoupled from core business logic.

Another common pattern is the Data Mapper, introduced
by Martin Fowler in Patterns of Enterprise Application Archi-
tecture [13]. The Data Mapper separates domain objects from
database operations, often using tools like sqlx or sqlc [14]
to generate type-safe mappings from raw SQL queries. This
allows developers to maintain full control over SQL while
reducing boilerplate code.

For teams seeking a Django or Ruby on Rails-like experi-
ence, tools such as GORM follow the Active Record pattern,
embedding CRUD operations within model structs [15]. While
convenient, this abstraction can obscure performance details
and introduce complexity when dealing with complex joins or
evolving schemas.

In contrast, document-oriented databases like MongoDB
utilize a Document Store pattern, where data is stored as
BSON documents without a rigid schema [16]. Access-
ing MongoDB in Go is typically done through the official
mongo-go-driver, which provides a low-level API that
aligns with Go’s preference for explicit and controlled op-
erations. While this model offers flexibility and rapid de-
velopment, it also shifts the burden of data validation and
normalization to the application layer.

Additionally, Go supports direct interaction with small SQL
databases using its standard library database/sql package.
Without external libraries, developers manually manage SQL
connections, prepared statements, and query execution. This
minimalist approach is more ideal for small-scale applications
or developers wanting full control over database interactions
with minimal overhead. Although it demands more boilerplate,
it reinforces Go’s philosophy of explicit and straightforward
programming.

These architectural strategies provide context for evaluating
Go’s standard library approach to data access, which, although
minimal, supports robust integration with both relational and
document-oriented databases when paired with thoughtful
architecture.

METHODOLOGY

To bridge the gap identified, we developed a practical cook-
book showcasing real-world scenarios implemented purely
using Go’s standard library. This cookbook includes clearly
documented examples, covering routing, middleware, database
interactions, logging, basic security practices and HTML tem-
plates.

The cookbook itself is implemented as an interactive doc-
umentation website using Go’s standard library, PostgreSQL,
and Docker containers, demonstrating practical feasibility and
ease of use in production-like environments.

SUPERMOTO CASE STUDY

H. Routing and Middleware

Demonstrated through Go 1.22’s enhanced ServeMux
router, showcasing effective use of route parameters and
method-specific handlers, alongside middleware patterns using
Go’s native http.Handler interface.

I. Database Integration

This project implements a PostgreSQL backend using Go’s
database/sql package and built-in tooling for database ini-
tialization, prepared statements, and structured error han-
dling—all without relying on external ORMs or query
builders. While this approach is minimal and highly trans-
parent, it does require more boilerplate and discipline from
the developer. However, it ensures fine-grained control over
queries, portability, and improved understanding of SQL be-
havior in production environments.

In broader Go development, several architectural patterns
are commonly used. For now, the cookbook explains the basic
differences with each and the common Go modules used to
implement them.

The decision to use a raw SQL approach in this project
was intentional—to demonstrate that Go’s standard library
is sufficient for robust, production-grade data access. That
said, developers are likely to gain an advantage by picking
a database access pattern based on their application require-
ments.



J. Server-side Rendering with Templates

Illustrated secure, performant web page rendering using
Go’s standard html/template library, emphasizing best prac-
tices in layout inheritance, partial templates, and safe HTML
escaping. This cookbook demonstrates template inheritance
with examples of layout embedding and modular components

A notable challenge here is the lack of intuitive docu-
mentation—developers often need to piece together multiple
small examples across forums and GitHub repositories. This
reinforces the value of a structured resource like the cookbook,
which offers a curated, context-rich introduction to templating
patterns and best practices.

EVALUATION

While Go’s standard library has improved significantly,
particularly with version 1.22, certain gaps persist. For exam-
ple, although the golang.org/x/net/websocket package exists,
its documentation recommends third-party solutions such as
github.com/gorilla/websocket or github.com/coder/websocket,
which are better maintained and more production-ready [17]
[18]. This indicates that while Go’s standard library covers
core features, real-world applications may still require supple-
mental packages for advanced functionality.

In practice, the cookbook revealed that most foundational
web application features—routing, middleware, database ac-
cess, and templating—are achievable with the standard library.
However, advanced use cases like real-time communication,
and complex architectures may still benefit from external
libraries. The goal, therefore, is not to eliminate all dependen-
cies, but to elevate the default skill baseline for Go developers
by emphasizing what’s already possible natively.

CONCLUSION AND FUTURE WORK

This paper explored the use of Go’s standard library for
web development, highlighting its advantages in flexibility and
maintainability. Through comparative evaluation and practical
implementation, it demonstrated that Go is a viable and even
advantageous alternative to popular web frameworks in many
contexts.

The primary insight gained is that Go’s standard library,
when well understood, provides a clean and powerful founda-
tion for web applications. The cookbook approach presented
here not only serves as a practical guide but also challenges
assumptions about the necessity of frameworks in Go devel-
opment.

Future work includes extending the cookbook to cover
features such as enhanced security, APIs, and more database
examples. Lastly, conducting usability studies and collecting
developer feedback could help refine the examples and im-
prove accessibility for teams of varying experience levels.

ACKNOWLEDGMENTS

This project was completed in fulfillment of the Integrated
Studies capstone requirement at Utah Valley University under
the supervision of Dr. Joseph Vogel. The author would like to
thank Dr. Saikat Das (Computer Science) and Dr. Dave Loper

(Information Systems & Technology) for their mentorship and
guidance throughout the project. Special thanks to Dr. Peter
Aldous for answering many crazy questions throughout my
five years at UVU.

REFERENCES

[1] S. J. Vaughan-Nichols, ”Gorilla Toolkit Open Source
Project Becomes Abandonware,” The New Stack, Dec.
20, 2022. [Online]. Available: https://thenewstack.io/
gorilla-toolkit-open-source-project-becomes-abandonware/ [Accessed:
Apr. 3, 2025].

[2] Gorilla Web Toolkit, ”Project Status Update,” Jul. 17,
2023. [Online]. Available: https://gorilla.github.io/blog/
2023-07-17-project-status-update/ [Accessed: Apr. 3, 2025].

[3] J. Schmidt, httprouter, GitHub repository. [Online]. Available: https://
github.com/julienschmidt/httprouter [Accessed: Apr. 3, 2025].

[4] gin-gonic, ”Gin HTTP web framework,” GitHub repository. [Online].
Available: https://github.com/gin-gonic/gin [Accessed: Apr. 3, 2025].

[5] JetBrains, ”The State of Developer Ecosystem 2023: Go,”
JetBrains, 2023. [Online]. Available: https://www.jetbrains.com/lp/
devecosystem-2023/go/. [Accessed: Apr. 10, 2025].

[6] LabStack, ”Echo Web Framework,” [Online]. Available: https://echo.
labstack.com/ [Accessed: Apr. 3, 2025].

[7] GoFiber, ”Fiber Web Framework,” [Online]. Available: https://gofiber.io/
[Accessed: Apr. 3, 2025].

[8] Buffalo, ”Rapid Web Development in Go,” [Online]. Available: https:
//gobuffalo.io/documentation/overview/ [Accessed: Apr. 3, 2025].

[9] ItalyPaleAle, ”Migrate HTTP server from fasthttp to net/http,” GitHub
Issue #4979, Aug. 5, 2022. [Online]. Available: https://github.com/dapr/
dapr/issues/4979 [Accessed: Apr. 3, 2025].

[10] Sobyte, ”Go standard library http vs fasthttp performance comparison,”
Mar. 2022. [Online]. Available: https://www.sobyte.net/post/2022-03/
nethttp-vs-fasthttp/ [Accessed: Apr. 3, 2025].

[11] gnet, ”Gnet Networking Framework,” GitHub repository. [Online].
Available: https://github.com/panjf2000/gnet [Accessed: Apr. 3, 2025].

[12] E. Evans, Domain-Driven Design, Addison-Wesley, 2003.
[13] M. Fowler, Patterns of Enterprise Application Architecture, Addison-

Wesley, 2002.
[14] K. Burke, “sqlc: Generate type-safe Go from SQL,” [Online]. Available:

https://sqlc.dev [Accessed: Apr. 3, 2025].
[15] “GORM: The fantastic ORM library for Golang,” [Online]. Available:

https://gorm.io [Accessed: Apr. 3, 2025].
[16] MongoDB Inc., “Data Modeling Introduction,” [Online].

Available: https://www.mongodb.com/docs/manual/core/
data-modeling-introduction/ [Accessed: Apr. 3, 2025].

[17] ”golang.org/x/net/websocket”, Go Project. [Online]. Available: https://
pkg.go.dev/golang.org/x/net/websocket [Accessed: Apr. 3, 2025].

[18] ”coder/websocket”, GitHub repository. [Online]. Available: https://
github.com/coder/websocket [Accessed: Apr. 3, 2025].

https://thenewstack.io/gorilla-toolkit-open-source-project-becomes-abandonware/
https://thenewstack.io/gorilla-toolkit-open-source-project-becomes-abandonware/
https://gorilla.github.io/blog/2023-07-17-project-status-update/
https://gorilla.github.io/blog/2023-07-17-project-status-update/
https://github.com/julienschmidt/httprouter
https://github.com/julienschmidt/httprouter
https://github.com/gin-gonic/gin
https://www.jetbrains.com/lp/devecosystem-2023/go/
https://www.jetbrains.com/lp/devecosystem-2023/go/
https://echo.labstack.com/
https://echo.labstack.com/
https://gofiber.io/
https://gobuffalo.io/documentation/overview/
https://gobuffalo.io/documentation/overview/
https://github.com/dapr/dapr/issues/4979
https://github.com/dapr/dapr/issues/4979
https://www.sobyte.net/post/2022-03/nethttp-vs-fasthttp/
https://www.sobyte.net/post/2022-03/nethttp-vs-fasthttp/
https://github.com/panjf2000/gnet
https://sqlc.dev
https://gorm.io
https://www.mongodb.com/docs/manual/core/data-modeling-introduction/
https://www.mongodb.com/docs/manual/core/data-modeling-introduction/
https://pkg.go.dev/golang.org/x/net/websocket
https://pkg.go.dev/golang.org/x/net/websocket
https://github.com/coder/websocket
https://github.com/coder/websocket

	Introduction
	Background and Related Work
	History of Routers in Go
	History of Frameworks in Go
	The Impact of Go 1.22's Improved Standard Library Router
	Performance Comparison of Go Routers
	Exploring Framework Popularity
	Framework Dependence and the Case for Minimalism
	Database Access Patterns in Go
	Routing and Middleware
	Database Integration
	Server-side Rendering with Templates

	References

